
The Language of Languages Research Project:
Unifying Concepts Expressed Across Different Notations

James R. Douglass
The Boeing Company

jamie.douglass@boeing.com

Nicholas Chen Ralph E. Johnson
University of Illinois at Urbana-Champaign

{nchen, rjohnson}@illinois.edu

Abstract
Maintaining the consistency of multiple notations used in
large projects is daunting. Language of Languages(LoLs)
is our experimental language workbench that fulfills a fre-
quently overlooked but important role: unify the different
notations so developers can better understand and evolve a
project. Due to the impossibility of anticipating all the nota-
tions that may be used in a project, LoLs adopts a language
agnostic view and supports different notations from free-
form text to graphical forms and shapes. Our demo begins
by illustrating the fundamental ideas of LoLs through build-
ing a calculator that supports multiple notations; the demo
concludes with more advanced projects that exemplify the
extent of our multi-notation support.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Design Tools and Techniques; D.3.3 [Program-
ming Languages]: Language Constructs and Features

General Terms Design, Languages

Keywords Language Workbench, Modeling, Smalltalk

1 Introduction
Different programming languages, libraries and frameworks
provide different notations for representing components.
For instance, state machines, a common component used in
many engineering disciplines, can be expressed using VHDL
code (text) or state diagrams (graphics). Large projects sel-
dom, if ever, commit to just a single notation. Instead, mul-
tiple notations are used, with developers choosing the most
expressive one for the task at hand.

Using multiple notations creates several challenges: (i)
communication – how would my colleagues understand the
notations that I have chosen? (ii) correctness – how would

Copyright is held by the author/owner(s).
SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

we verify that notations are consistent with one another?
LoLs [1] has an ambitious goal: distill the core concepts
from each component and attempt to unify these underlying
concepts across different notations.

This unification maintains consistency and facilitates vir-
tual integration of components as the project evolves. Virtual
integration, done early and continuously, enables prompt de-
tection of problems and reduces the cost of fixing them. Vir-
tual integration is a key component of the System Architec-
ture Virtual Integration (SAVI) project [3], and we see LoLs
as one feasible approach for supporting it.

2 Language of Languages Approach
Consider the simple expression “3 + 4”. There are different
notations to represent this expression: in Western Numerals,
Roman Numerals, or even using graphics. Regardless of the
notation, the underlying concept remains the same: we are
adding two numbers together. How can we represent this
concept across different notations?

The fundamental building block of LoLs is the Language
Element. Everything has a corresponding Language Element.
In Figure 1, the symbols “3”, “+” and “4” have correspond-
ing Language Elements. These Language Elements

form a Language Element Tree. Each Language Element

has a corresponding Concept. In our example, we have two
Concepts: Addition and Number. Each Concept, in turn,
has several Language Definitions that it can select from.
In our example, we have three Language Definitions:
Western, Roman and Graphical. The Western Definition is
being used in our example (indicated by the check mark).

The fundamental idea of LoLs is thinking in terms
of reusable Concepts that apply across different nota-
tions. Each notation is supported by a particular Language
Definition. Language Defintions do not stand alone;
they can reference other Concepts. For instance, it is nec-
essary for the Addition Concept to reference and use the
Number Concept. Each Language Definition supports
three operations: checking, parsing and projecting.

Checking The checking operation validates if a Language
Definition is applicable for the current context.



Figure 1. Fundamental building blocks in LoLs for the
“3+4” example.

Parsing The parsing operation recognizes the notation that
is being used and builds a Language Element Tree

from each construct of interest.

Projecting The projecting operation interprets or transforms
Language Elements. This operation can take a Lan-
guage Element Tree and reduce it to a single value e.g.
the tree in Figure 1 is reduced to the value 7. Or, it can
transform a Language Element Tree from one notation
(Western Numerals) to a different notation (Graphical).

Our approach allows us to easily “plug-n-play” differ-
ent concepts. New Concepts and Language Definitions

can easily be written by the developer or extended from
existing ones. Judicious use of Concepts and Language

Definitions in LoLs affords the developer a lot of free-
dom in expressing the underlying domain knowledge. It is
an open research question to catalog the common concepts
that apply to various projects.

3 Agenda for Demo
We begin by showing how to build a basic calculator in
LoLs. We start with a calculator that only understands West-
ern Numerals and show how to add support for graphical
notations in a modular fashion. Starting with a simple exam-
ple provides the audience with both a high-level overview
of LoLs and also a deeper understanding of how our tool is
implemented. Figure 2 shows the preliminary user interface
for our tool. After familiarizing the audience with the basic
ideas, we will demonstrate how to support projects that re-
quire the use of multiple notations. These projects illustrate
the extent of our support for multiple notations.

The SPLASH community has always been at the fore-
front of new ideas and would be a befitting audience for
LoLs. LoLs is a novel idea that presents not only a new way
of thinking about programming but also a minimalistic yet
flexible approach that is easily extensible. Our current boot-
strap implementation in Squeak Smalltalk [2] makes good
use of metacircularity (LoLs is defined in terms of itself)
and well-known design patterns for its core. We leverage the
Morphic graphic system in Squeak to support graphical no-
tations. LoLs has a small core that is easy to understand and
extend for different purposes.

Figure 2. Language Workbench in bootstrap version of
LoLs.

The LoLs bootstrap and examples presented will be avail-
able for download from www.LanguageOfLanguages.org

after our demo. LoLs is an open source project under the
MIT license and we encourage participation and contribu-
tions from the community.

4 Presenters
Jamie Douglass and Nicholas Chen are the main develop-
ers of LoLs. Jamie Douglass is an Architect and Associate
Technical Fellow within the Office of IT Chief Engineer
at the Boeing Company. His research interests include lan-
guage based integration, modeling and software develop-
ment. Nicholas Chen is a PhD candidate in the Software Ar-
chitecture Group at the University of Illinois. His research
interest lies in mining patterns of software evolution and cre-
ating flexible software engineering tools to support them.

Acknowledgments
The authors thank Jeff Overbey, Kathleen Chalas and Eric
Reed for feedback on earlier drafts of this manuscript.

References
[1] J. R. Douglass. Language of Languages for Flexible Develop-

ment. In FlexiTools@SPLASH2010, 2010.

[2] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: the story of Squeak, a practical Smalltalk
written in itself. SIGPLAN Not., 32:318–326, October 1997.
ISSN 0362-1340.

[3] D. Redman, D. Ward, J. Chilenski, and G. Pollari. Virtual
Integration for Improved System Design. In The First Analytic
Virtual Integratio of Cyber-Physical Systems Workshop, 2010.

www.LanguageOfLanguages.org

	Introduction
	Language of Languages Approach
	Agenda for Demo
	Presenters

