
LANGUAGE OF LANGUAGES
www.languageoflanguages.org

1Tuesday, October 25, 2011

http://www.languageoflanguages.org
http://www.languageoflanguages.org

LANGUAGE OF LANGUAGES

Nicholas
Chen

www.languageoflanguages.org
1Tuesday, October 25, 2011

http://www.languageoflanguages.org
http://www.languageoflanguages.org

LANGUAGE OF LANGUAGES

Jamie
Douglass

Nicholas
Chen

www.languageoflanguages.org
1Tuesday, October 25, 2011

http://www.languageoflanguages.org
http://www.languageoflanguages.org

2Tuesday, October 25, 2011

Fortran

2Tuesday, October 25, 2011

Fortran

Lisp

2Tuesday, October 25, 2011

Cobol

Fortran

Lisp

2Tuesday, October 25, 2011

Cobol

Fortran

Lisp

3Tuesday, October 25, 2011

Cobol

Lua
PHP

FS
ha
rp

Haskell

Sc
al
a

G
ro
ov
yJ

av
a

Ja
va
sc
rip

t
Pr
ol
og

CS
ha
rp Octave
Perl

BashGo
Clojure

Python
Ruby
C++ Ob

je
ct
ive

-C
Scheme

Ocaml

JR
ub
y

Na
sm

JythonE
rla

ng

Fortran

Lisp

3Tuesday, October 25, 2011

Cobol

Lua
PHP

FS
ha
rp

Haskell

Sc
al
a

G
ro
ov
yJ

av
a

Ja
va
sc
rip

t
Pr
ol
og

CS
ha
rp Octave
Perl

BashGo
Clojure

Python
Ruby
C++ Ob

je
ct
ive

-C
Scheme

Ocaml

JR
ub
y

Na
sm

JythonE
rla

ng

Fortran

Lisp

UML

3Tuesday, October 25, 2011

Cobol

Lua
PHP

FS
ha
rp

Haskell

Sc
al
a

G
ro
ov
yJ

av
a

Ja
va
sc
rip

t
Pr
ol
og

CS
ha
rp Octave
Perl

BashGo
Clojure

Python
Ruby
C++ Ob

je
ct
ive

-C
Scheme

Ocaml

JR
ub
y

Na
sm

JythonE
rla

ng

Fortran

Lisp

CSS
UML

3Tuesday, October 25, 2011

Cobol

Lua
PHP

FS
ha
rp

Haskell

Sc
al
a

G
ro
ov
yJ

av
a

Ja
va
sc
rip

t
Pr
ol
og

CS
ha
rp Octave
Perl

BashGo
Clojure

Python
Ruby
C++ Ob

je
ct
ive

-C
Scheme

Ocaml

JR
ub
y

Na
sm

JythonE
rla

ng

Fortran

Lisp

CSS
LaTeXUML

3Tuesday, October 25, 2011

Cobol

Lua
PHP

FS
ha
rp

Haskell

Sc
al
a

G
ro
ov
yJ

av
a

Ja
va
sc
rip

t
Pr
ol
og

CS
ha
rp Octave
Perl

BashGo
Clojure

Python
Ruby
C++ Ob

je
ct
ive

-C
Scheme

Ocaml

JR
ub
y

Na
sm

JythonE
rla

ng

Fortran

Lisp

CSS
LaTeX

XML

UML

3Tuesday, October 25, 2011

Cobol

Lua
PHP

FS
ha
rp

Haskell

Sc
al
a

G
ro
ov
yJ

av
a

Ja
va
sc
rip

t
Pr
ol
og

CS
ha
rp Octave
Perl

BashGo
Clojure

Python
Ruby
C++ Ob

je
ct
ive

-C
Scheme

Ocaml

JR
ub
y

Na
sm

JythonE
rla

ng

Fortran

Lisp

CSS
LaTeX

XML
Regex

UML

3Tuesday, October 25, 2011

Cobol

Lua
PHP

FS
ha
rp

Haskell

Sc
al
a

G
ro
ov
yJ

av
a

Ja
va
sc
rip

t
Pr
ol
og

CS
ha
rp Octave
Perl

BashGo
Clojure

Python
Ruby
C++ Ob

je
ct
ive

-C
Scheme

Ocaml

JR
ub
y

Na
sm

JythonE
rla

ng

Fortran

Lisp

CSS
LaTeX

XML
Regex

GraphvizUML

3Tuesday, October 25, 2011

4Tuesday, October 25, 2011

LANGUAGES TYPICALLY USED

4Tuesday, October 25, 2011

LANGUAGES TYPICALLY USED

4Tuesday, October 25, 2011

LANGUAGES TYPICALLY USED

Matlab

Simulink

Modelica

Models

...

4Tuesday, October 25, 2011

LANGUAGES TYPICALLY USED

Matlab

Simulink

Modelica

Models

...

Architecture

AADL

UML

SysML

...

4Tuesday, October 25, 2011

LANGUAGES TYPICALLY USED

Matlab

Simulink

Modelica

Models

...

Architecture

AADL

UML

SysML

...

Software

C/C++

Java

Fortran

...

4Tuesday, October 25, 2011

LANGUAGES TYPICALLY USED

Matlab

Simulink

Modelica

Models

...

4Tuesday, October 25, 2011

SPECIALIZED DOMAINS

Matlab

Simulink

Modelica

Models

...

5Tuesday, October 25, 2011

SPECIALIZED DOMAINS

Matlab

Simulink

Modelica

Models

...

5Tuesday, October 25, 2011

SPECIALIZED DOMAINS

Electrical
Subsystem

Matlab

Simulink

Modelica

Models

...

5Tuesday, October 25, 2011

SPECIALIZED DOMAINS

Electrical
Subsystem

Flight
Controls

Matlab

Simulink

Modelica

Models

...

5Tuesday, October 25, 2011

SPECIALIZED DOMAINS

Electrical
Subsystem

Flight
Controls

Avionics

Matlab

Simulink

Modelica

Models

...

5Tuesday, October 25, 2011

SPECIALIZED DOMAINS

Electrical
Subsystem

Flight
Controls

Avionics
Mechanical/
Hydraulics

Matlab

Simulink

Modelica

Models

...

5Tuesday, October 25, 2011

EXAMPLE MODEL

6Tuesday, October 25, 2011

EXAMPLE MODEL
IDLE

unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

doorClosed

lightOn drawerOpened

drawerOpened
lightOn

panelClosed

6Tuesday, October 25, 2011

EXAMPLE MODEL
IDLE

unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

doorClosed

lightOn drawerOpened

drawerOpened
lightOn

panelClosed

6Tuesday, October 25, 2011

FOR THE PROGRAMMER
IDLE

unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

doorClosed

lightOn drawerOpened

drawerOpened
lightOn

panelClosed

7Tuesday, October 25, 2011

FOR THE PROGRAMMER
IDLE

unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

doorClosed

lightOn drawerOpened

drawerOpened
lightOn

panelClosed

7Tuesday, October 25, 2011

FOR THE PROGRAMMER

State idle =
new State("idle");

State activeState =
new State("active");

State waitingForLightState =
new State("waitingForLight");

State waitingForDrawerState =
new State("waitingForDrawer");

State unlockedPanelState =
new State("unlockedPanel");

IDLE
unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

doorClosed

lightOn drawerOpened

drawerOpened
lightOn

panelClosed

7Tuesday, October 25, 2011

FOR THE ENGINEER

State idle =
new State("idle");

State activeState =
new State("active");

State waitingForLightState =
new State("waitingForLight");

State waitingForDrawerState =
new State("waitingForDrawer");

State unlockedPanelState =
new State("unlockedPanel");

8Tuesday, October 25, 2011

FOR THE ENGINEER

State idle =
new State("idle");

State activeState =
new State("active");

State waitingForLightState =
new State("waitingForLight");

State waitingForDrawerState =
new State("waitingForDrawer");

State unlockedPanelState =
new State("unlockedPanel");

8Tuesday, October 25, 2011

FOR THE ENGINEER

State idle =
new State("idle");

State activeState =
new State("active");

State waitingForLightState =
new State("waitingForLight");

State waitingForDrawerState =
new State("waitingForDrawer");

State unlockedPanelState =
new State("unlockedPanel");

events
! doorClosed
! drawerOpened
! ...
end

commands
! unlockPanel
! lockPanel
! ...
end

state idle
! actions {unlockDoor lockPanel}
! doorClosed => active
end

8Tuesday, October 25, 2011

FOR THE SYSTEMS ANALYST

State idle =
new State("idle");

State activeState =
new State("active");

State waitingForLightState =
new State("waitingForLight");

State waitingForDrawerState =
new State("waitingForDrawer");

State unlockedPanelState =
new State("unlockedPanel");

events
! doorClosed
! drawerOpened
! ...
end

commands
! unlockPanel
! lockPanel
! ...
end

state idle
! actions {unlockDoor lockPanel}
! doorClosed => active
end

9Tuesday, October 25, 2011

FOR THE SYSTEMS ANALYST

State idle =
new State("idle");

State activeState =
new State("active");

State waitingForLightState =
new State("waitingForLight");

State waitingForDrawerState =
new State("waitingForDrawer");

State unlockedPanelState =
new State("unlockedPanel");

events
! doorClosed
! drawerOpened
! ...
end

commands
! unlockPanel
! lockPanel
! ...
end

state idle
! actions {unlockDoor lockPanel}
! doorClosed => active
end

9Tuesday, October 25, 2011

FOR THE SYSTEMS ANALYST

State idle =
new State("idle");

State activeState =
new State("active");

State waitingForLightState =
new State("waitingForLight");

State waitingForDrawerState =
new State("waitingForDrawer");

State unlockedPanelState =
new State("unlockedPanel");

active

idle

doorClosed

... ...

events
! doorClosed
! drawerOpened
! ...
end

commands
! unlockPanel
! lockPanel
! ...
end

state idle
! actions {unlockDoor lockPanel}
! doorClosed => active
end

9Tuesday, October 25, 2011

KEEP IN SYNC

State idle =
new State("idle");

State activeState =
new State("active");

State waitingForLightState =
new State("waitingForLight");

State waitingForDrawerState =
new State("waitingForDrawer");

State unlockedPanelState =
new State("unlockedPanel");

active

idle

doorClosed

... ...

events
! doorClosed
! drawerOpened
! ...
end

commands
! unlockPanel
! lockPanel
! ...
end

state idle
! actions {unlockDoor lockPanel}
! doorClosed => active
end

10Tuesday, October 25, 2011

KEEP IN SYNC

State idle =
new State("idle");

State activeState =
new State("active");

State waitingForLightState =
new State("waitingForLight");

State waitingForDrawerState =
new State("waitingForDrawer");

State unlockedPanelState =
new State("unlockedPanel");

active

idle

doorClosed

... ...

events
! doorClosed
! drawerOpened
! ...
end

commands
! unlockPanel
! lockPanel
! ...
end

state idle
! actions {unlockDoor lockPanel}
! doorClosed => active
end

10Tuesday, October 25, 2011

KEEP IN SYNC

State idle =
new State("idle");

State activeState =
new State("active");

State waitingForLightState =
new State("waitingForLight");

State waitingForDrawerState =
new State("waitingForDrawer");

State unlockedPanelState =
new State("unlockedPanel");

active

idle

doorClosed

... ...

events
! doorClosed
! drawerOpened
! ...
end

commands
! unlockPanel
! lockPanel
! ...
end

state idle
! actions {unlockDoor lockPanel}
! doorClosed => active
end

10Tuesday, October 25, 2011

LANGUAGE OF LANGUAGES

11Tuesday, October 25, 2011

LANGUAGE OF LANGUAGES

Experimental language workbench
that embraces the use of multiple
notations (textual and graphical)

11Tuesday, October 25, 2011

LANGUAGE OF LANGUAGES

Experimental language workbench
that embraces the use of multiple
notations (textual and graphical)

for flexible development

12Tuesday, October 25, 2011

LANGUAGE OF LANGUAGES

13Tuesday, October 25, 2011

LANGUAGE OF LANGUAGES

Language Workbench: IDE for
convenient language experimentation

(creating, editing, translating)

13Tuesday, October 25, 2011

LANGUAGE OF LANGUAGES

Language Workbench: IDE for
convenient language experimentation

(creating, editing, translating)

13Tuesday, October 25, 2011

ROADMAP

14Tuesday, October 25, 2011

ROADMAP
•Support a mix of textual and graphical languages.
•Support parsing as well as projecting
•Minimal paradigm with Language Elements, Concepts,
Language Definitions.
•Support for outline, syntax coloring, code completion,
etc
•Support for language debugging
•Web based app (like lively kernel)
•Community repository of Concepts for plug-n-play
•Fine-grained version control based on concepts
•Meta-circularity: LoLs is implemented in LoLs

14Tuesday, October 25, 2011

ROADMAP
•Support a mix of textual and graphical languages.
•Support parsing as well as projecting
•Minimal paradigm with Language Elements, Concepts,
Language Definitions.
•Support for outline, syntax coloring, code completion,
etc
•Support for language debugging
•Web based app (like lively kernel)
•Community repository of Concepts for plug-n-play
•Fine-grained version control based on concepts
•Meta-circularity: LoLs is implemented in LoLs

✔

14Tuesday, October 25, 2011

ROADMAP
•Support a mix of textual and graphical languages.
•Support parsing as well as projecting
•Minimal paradigm with Language Elements, Concepts,
Language Definitions.
•Support for outline, syntax coloring, code completion,
etc
•Support for language debugging
•Web based app (like lively kernel)
•Community repository of Concepts for plug-n-play
•Fine-grained version control based on concepts
•Meta-circularity: LoLs is implemented in LoLs

✔

✔

14Tuesday, October 25, 2011

ROADMAP
•Support a mix of textual and graphical languages.
•Support parsing as well as projecting
•Minimal paradigm with Language Elements, Concepts,
Language Definitions.
•Support for outline, syntax coloring, code completion,
etc
•Support for language debugging
•Web based app (like lively kernel)
•Community repository of Concepts for plug-n-play
•Fine-grained version control based on concepts
•Meta-circularity: LoLs is implemented in LoLs

✔

✔
✔

14Tuesday, October 25, 2011

ROADMAP
•Support a mix of textual and graphical languages.
•Support parsing as well as projecting
•Minimal paradigm with Language Elements, Concepts,
Language Definitions.
•Support for outline, syntax coloring, code completion,
etc
•Support for language debugging
•Web based app (like lively kernel)
•Community repository of Concepts for plug-n-play
•Fine-grained version control based on concepts
•Meta-circularity: LoLs is implemented in LoLs

✔

✔
✔

15Tuesday, October 25, 2011

SMALL TASTE

16Tuesday, October 25, 2011

SMALL TASTE

16Tuesday, October 25, 2011

SMALL TASTE

•Calculation

16Tuesday, October 25, 2011

SMALL TASTE

•Calculation
•Western Math

16Tuesday, October 25, 2011

SMALL TASTE

•Calculation
•Western Math
•Roman Numerals

16Tuesday, October 25, 2011

SMALL TASTE

•Calculation
•Western Math
•Roman Numerals
•Stack Machine

16Tuesday, October 25, 2011

HOW IT WORKS

17Tuesday, October 25, 2011

18Tuesday, October 25, 2011

 Concepts

18Tuesday, October 25, 2011

CALCULATOR EXAMPLE

3 + 4

19Tuesday, October 25, 2011

CALCULATOR EXAMPLE

3 + 4❶ Numbers

20Tuesday, October 25, 2011

CALCULATOR EXAMPLE

3 + 4❶ Numbers
❷ Addition

21Tuesday, October 25, 2011

22Tuesday, October 25, 2011

3 + 4

22Tuesday, October 25, 2011

3 + 4
Parse!

22Tuesday, October 25, 2011

TREE REPRESENTATION
Language Element Tree (LET)

23Tuesday, October 25, 2011

TREE REPRESENTATION
Language Element Tree (LET)

23Tuesday, October 25, 2011

ATTACH CONCEPTS

24Tuesday, October 25, 2011

ATTACH DEFINITIONS

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

25Tuesday, October 25, 2011

ATTACH DEFINITIONS

✔

✔

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

25Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

SWITCH DEFINITIONS

✔

✔

26Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

SWITCH DEFINITIONS

✔

✔

26Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

SWITCH DEFINITIONS

✔

✔

III IV

26Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

LANGUAGE DEFINITIONS
27Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

LANGUAGE DEFINITIONS

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

27Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

LANGUAGE DEFINITIONS

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

27Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

LANGUAGE DEFINITIONS

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

3+4

27Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

LANGUAGE DEFINITIONS

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

3+4 →

27Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

LANGUAGE DEFINITIONS

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

3+4 →

27Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

LANGUAGE DEFINITIONS

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

Addition ← term:t ‘+’ factor:f {t,f}

3+4 →

27Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

LANGUAGE DEFINITIONS

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

^self an: [t := self apply: #term]
n: [self a: $+]
n: [f := self apply: #factor]
n: [self le: {t. f}]

Addition ← term:t ‘+’ factor:f {t,f}

3+4 →

27Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

LANGUAGE DEFINITIONS
28Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

LANGUAGE DEFINITIONS
28Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

LANGUAGE DEFINITIONS

Which definition
to use?

28Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

LANGUAGE DEFINITIONS

^self language = ‘Western Math’

Which definition
to use?

28Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

LANGUAGE DEFINITIONS

^self child1 value = 1
^self language = ‘Western Math’

Which definition
to use?

28Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

LANGUAGE DEFINITIONS
29Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

LANGUAGE DEFINITIONS
29Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

LANGUAGE DEFINITIONS

→

29Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

LANGUAGE DEFINITIONS

3 + 4→

29Tuesday, October 25, 2011

Language
Element

Language
Element

Language
Element

3

+

4

Number
Concept

Western
Math

Roman
Numerals ...

Addition
Concept

Western
Math Calculate ...

us
es

Definitions

Definitions

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

! Parsing
"Context Checking
Projecting

❶Parsing
❷Context Checking
❸Projecting

LANGUAGE DEFINITIONS

^{self lp1. $+ asText allBold. self lp2}
Projectional pattern form

3 + 4→

29Tuesday, October 25, 2011

QUICK TOUR

30Tuesday, October 25, 2011

ACCOMMODATING CHANGE

31Tuesday, October 25, 2011

ACCOMMODATING CHANGE

100

31Tuesday, October 25, 2011

ACCOMMODATING CHANGE

Miles?

100

31Tuesday, October 25, 2011

ACCOMMODATING CHANGE

Miles?Kilometers?

100

31Tuesday, October 25, 2011

LANGUAGE OF LANGUAGES
APPROACH

Miles?Kilometers?

100

32Tuesday, October 25, 2011

LANGUAGE OF LANGUAGES
APPROACH

Miles?Kilometers?

100

32Tuesday, October 25, 2011

LANGUAGE OF LANGUAGES
APPROACH

Miles?Kilometers?

100

Number
Concept

32Tuesday, October 25, 2011

LANGUAGE OF LANGUAGES
APPROACH

Miles?Kilometers?

100

Number
Concept +

32Tuesday, October 25, 2011

LANGUAGE OF LANGUAGES
APPROACH

Miles?Kilometers?

100

Number
Concept

Units
Concept+

32Tuesday, October 25, 2011

UNITS DEMO

33Tuesday, October 25, 2011

FUTURE WORK

34Tuesday, October 25, 2011

FUTURE WORK

Electrical
Subsystem

Flight
Controls

Avionics
Mechanical/
Hydraulics

Matlab

Simulink

Modelica

Models

...

Handle different notations
within one domain

34Tuesday, October 25, 2011

Matlab

Simulink

Modelica

Models

...

Architecture

AADL

UML

SysML

...

Software

C/C++

Java

Fortran

...

FUTURE WORK

!" | CMU/SEI-2009-TR-017#

The team then identified the set of analyses for each of those tiers, propagating and validating
requirements and constraints across model levels and across multiple operational quality dimen-
sions. In addition, the POC project was to demonstrate the feasibility of an architecture-centric
model repository supporting the business process of airframer/supplier interaction.

3.2 The Aircraft System Model

Figure 6 shows the drawing of the aircraft system provided to the POC team. It shows major
physical subsystems, some providing aircraft capability, such as navigation or landing gear, and
others providing physical resources to the subsystems, such as the electrical power, hydraulics,
and fuel.

Figure 6: Aircraft System Drawing

Figure 7: AADL Model of Aircraft System

35Tuesday, October 25, 2011

Matlab

Simulink

Modelica

Models

...

Architecture

AADL

UML

SysML

...

Software

C/C++

Java

Fortran

...

FUTURE WORK

35Tuesday, October 25, 2011

Matlab

Simulink

Modelica

Models

...

Architecture

AADL

UML

SysML

...

Software

C/C++

Java

Fortran

...

FUTURE WORK

!" | CMU/SEI-2009-TR-017#

The team then identified the set of analyses for each of those tiers, propagating and validating
requirements and constraints across model levels and across multiple operational quality dimen-
sions. In addition, the POC project was to demonstrate the feasibility of an architecture-centric
model repository supporting the business process of airframer/supplier interaction.

3.2 The Aircraft System Model

Figure 6 shows the drawing of the aircraft system provided to the POC team. It shows major
physical subsystems, some providing aircraft capability, such as navigation or landing gear, and
others providing physical resources to the subsystems, such as the electrical power, hydraulics,
and fuel.

Figure 6: Aircraft System Drawing

Figure 7: AADL Model of Aircraft System

!" | CMU/SEI-2009-TR-017#

The team then identified the set of analyses for each of those tiers, propagating and validating
requirements and constraints across model levels and across multiple operational quality dimen-
sions. In addition, the POC project was to demonstrate the feasibility of an architecture-centric
model repository supporting the business process of airframer/supplier interaction.

3.2 The Aircraft System Model

Figure 6 shows the drawing of the aircraft system provided to the POC team. It shows major
physical subsystems, some providing aircraft capability, such as navigation or landing gear, and
others providing physical resources to the subsystems, such as the electrical power, hydraulics,
and fuel.

Figure 6: Aircraft System Drawing

Figure 7: AADL Model of Aircraft System

35Tuesday, October 25, 2011

Matlab

Simulink

Modelica

Models

...

Architecture

AADL

UML

SysML

...

Software

C/C++

Java

Fortran

...

FUTURE WORK

!" | CMU/SEI-2009-TR-017#

The team then identified the set of analyses for each of those tiers, propagating and validating
requirements and constraints across model levels and across multiple operational quality dimen-
sions. In addition, the POC project was to demonstrate the feasibility of an architecture-centric
model repository supporting the business process of airframer/supplier interaction.

3.2 The Aircraft System Model

Figure 6 shows the drawing of the aircraft system provided to the POC team. It shows major
physical subsystems, some providing aircraft capability, such as navigation or landing gear, and
others providing physical resources to the subsystems, such as the electrical power, hydraulics,
and fuel.

Figure 6: Aircraft System Drawing

Figure 7: AADL Model of Aircraft System

!" | CMU/SEI-2009-TR-017#

The team then identified the set of analyses for each of those tiers, propagating and validating
requirements and constraints across model levels and across multiple operational quality dimen-
sions. In addition, the POC project was to demonstrate the feasibility of an architecture-centric
model repository supporting the business process of airframer/supplier interaction.

3.2 The Aircraft System Model

Figure 6 shows the drawing of the aircraft system provided to the POC team. It shows major
physical subsystems, some providing aircraft capability, such as navigation or landing gear, and
others providing physical resources to the subsystems, such as the electrical power, hydraulics,
and fuel.

Figure 6: Aircraft System Drawing

Figure 7: AADL Model of Aircraft System

35Tuesday, October 25, 2011

Matlab

Simulink

Modelica

Models

...

Architecture

AADL

UML

SysML

...

Software

C/C++

Java

Fortran

...

FUTURE WORK

!! | CMU/SEI-2009-TR-017"

Figure 7 shows a portion of the corresponding AADL model. In the model, we have represented
the physical subsystems as AADL systems that can later be refined and the physical resources as
AADL buses. Each aircraft subsystem is represented by a separate AADL system type whose spe-
cification includes properties about the physical characteristics (e.g., mass) of the subsystem. A
separate bus type has been defined for each type of resource. Bus access connections represent the
physical connection between subsystems and their resources. The bus types and access connec-
tions also have mass properties. In addition, each bus type has a resource capacity property, and
the bus access features (connection points) have resource supply properties, such as the engine
contributing electrical power to the electrical power resource, and resource budget properties,
such as the cockpit drawing electrical power.

We have elaborated the flight guidance system (FGS) of this Tier 1 model into a Tier 2 model
representing the distributed computer platform (physical view) and the embedded application sub-
systems (logical view) of the IMA subsystem. This elaboration is not a separate model, but a re-
finement of the FGS system model using the AADL extends mechanism. Because of this refine-
ment, we can now specify a Tier 1 variant and a Tier 2 variant of the aircraft model and instantiate
both for analysis from a single source.

Figure 8: IMA Computer Platform

Figure 8 shows a portion of the physical view that is, devices to represent sensors and actuators
to the physical system, buses to represent networks such as ARINC429, and systems to represent
processing units and communication units. The symmetry reflects the dual redundant nature of the
IMA platform.

The Tier 2 model also elaborates the electrical power distribution by a power subsystem that rece-
ives its supply from the main power system and provides it to the various computer hardware
components, which is captured in a graphical view separate from the physical view in Figure 8.

!! | CMU/SEI-2009-TR-017"

Figure 7 shows a portion of the corresponding AADL model. In the model, we have represented
the physical subsystems as AADL systems that can later be refined and the physical resources as
AADL buses. Each aircraft subsystem is represented by a separate AADL system type whose spe-
cification includes properties about the physical characteristics (e.g., mass) of the subsystem. A
separate bus type has been defined for each type of resource. Bus access connections represent the
physical connection between subsystems and their resources. The bus types and access connec-
tions also have mass properties. In addition, each bus type has a resource capacity property, and
the bus access features (connection points) have resource supply properties, such as the engine
contributing electrical power to the electrical power resource, and resource budget properties,
such as the cockpit drawing electrical power.

We have elaborated the flight guidance system (FGS) of this Tier 1 model into a Tier 2 model
representing the distributed computer platform (physical view) and the embedded application sub-
systems (logical view) of the IMA subsystem. This elaboration is not a separate model, but a re-
finement of the FGS system model using the AADL extends mechanism. Because of this refine-
ment, we can now specify a Tier 1 variant and a Tier 2 variant of the aircraft model and instantiate
both for analysis from a single source.

Figure 8: IMA Computer Platform

Figure 8 shows a portion of the physical view that is, devices to represent sensors and actuators
to the physical system, buses to represent networks such as ARINC429, and systems to represent
processing units and communication units. The symmetry reflects the dual redundant nature of the
IMA platform.

The Tier 2 model also elaborates the electrical power distribution by a power subsystem that rece-
ives its supply from the main power system and provides it to the various computer hardware
components, which is captured in a graphical view separate from the physical view in Figure 8.

35Tuesday, October 25, 2011

Matlab

Simulink

Modelica

Models

...

Architecture

AADL

UML

SysML

...

Software

C/C++

Java

Fortran

...

FUTURE WORK

!! | CMU/SEI-2009-TR-017"

Figure 7 shows a portion of the corresponding AADL model. In the model, we have represented
the physical subsystems as AADL systems that can later be refined and the physical resources as
AADL buses. Each aircraft subsystem is represented by a separate AADL system type whose spe-
cification includes properties about the physical characteristics (e.g., mass) of the subsystem. A
separate bus type has been defined for each type of resource. Bus access connections represent the
physical connection between subsystems and their resources. The bus types and access connec-
tions also have mass properties. In addition, each bus type has a resource capacity property, and
the bus access features (connection points) have resource supply properties, such as the engine
contributing electrical power to the electrical power resource, and resource budget properties,
such as the cockpit drawing electrical power.

We have elaborated the flight guidance system (FGS) of this Tier 1 model into a Tier 2 model
representing the distributed computer platform (physical view) and the embedded application sub-
systems (logical view) of the IMA subsystem. This elaboration is not a separate model, but a re-
finement of the FGS system model using the AADL extends mechanism. Because of this refine-
ment, we can now specify a Tier 1 variant and a Tier 2 variant of the aircraft model and instantiate
both for analysis from a single source.

Figure 8: IMA Computer Platform

Figure 8 shows a portion of the physical view that is, devices to represent sensors and actuators
to the physical system, buses to represent networks such as ARINC429, and systems to represent
processing units and communication units. The symmetry reflects the dual redundant nature of the
IMA platform.

The Tier 2 model also elaborates the electrical power distribution by a power subsystem that rece-
ives its supply from the main power system and provides it to the various computer hardware
components, which is captured in a graphical view separate from the physical view in Figure 8.

!! | CMU/SEI-2009-TR-017"

Figure 7 shows a portion of the corresponding AADL model. In the model, we have represented
the physical subsystems as AADL systems that can later be refined and the physical resources as
AADL buses. Each aircraft subsystem is represented by a separate AADL system type whose spe-
cification includes properties about the physical characteristics (e.g., mass) of the subsystem. A
separate bus type has been defined for each type of resource. Bus access connections represent the
physical connection between subsystems and their resources. The bus types and access connec-
tions also have mass properties. In addition, each bus type has a resource capacity property, and
the bus access features (connection points) have resource supply properties, such as the engine
contributing electrical power to the electrical power resource, and resource budget properties,
such as the cockpit drawing electrical power.

We have elaborated the flight guidance system (FGS) of this Tier 1 model into a Tier 2 model
representing the distributed computer platform (physical view) and the embedded application sub-
systems (logical view) of the IMA subsystem. This elaboration is not a separate model, but a re-
finement of the FGS system model using the AADL extends mechanism. Because of this refine-
ment, we can now specify a Tier 1 variant and a Tier 2 variant of the aircraft model and instantiate
both for analysis from a single source.

Figure 8: IMA Computer Platform

Figure 8 shows a portion of the physical view that is, devices to represent sensors and actuators
to the physical system, buses to represent networks such as ARINC429, and systems to represent
processing units and communication units. The symmetry reflects the dual redundant nature of the
IMA platform.

The Tier 2 model also elaborates the electrical power distribution by a power subsystem that rece-
ives its supply from the main power system and provides it to the various computer hardware
components, which is captured in a graphical view separate from the physical view in Figure 8.

35Tuesday, October 25, 2011

Matlab

Simulink

Modelica

Models

...

Architecture

AADL

UML

SysML

...

Software

C/C++

Java

Fortran

...

FUTURE WORK

36Tuesday, October 25, 2011

Matlab

Simulink

Modelica

Models

...

Architecture

AADL

UML

SysML

...

Software

C/C++

Java

Fortran

...

FUTURE WORK

Architecture Level Software System Faults
& Their Root Causes

Violation of data stream assumptions

•Stream miss rates, Mismatched data representation, Latency jitter & age

Partitions as Isolation Regions

•Space, time, and bandwidth partitioning

•Isolation not guaranteed due to undocumented resource sharing

•fault containment, security levels, safety levels, distribution

Virtualization of time & resources

!"#$%&$'"#()*%'"+,(*"*),-.-
/&0%(+&""'+%.&"(+&"-.-%'"+,

/*0%.%.&"'#(*0+1.%'+%20'(3&#')-
4&#')(+&35).*"+'

•Logical vs. physical redundancy

•Time stamping of data & asynchronous systems

Inconsistent System States & Interactions

•Modal systems with modal components

•Concurrency & redundancy management

•Application level interaction protocols

Performance impedance mismatches

•Processor, memory & network resources

•Compositional & replacement performance mismatches

•Unmanaged computer system resources

6*2)%(50&5*7*%.&"(
8'+20.%,(*"*),-.-(

90+1.%'+%20*)(0'#2"#*"+,(
5*%%'0"-

:'-&20+'(;2#7'%(*"*),-.-(<(
%*-=(0&))$25(*"*),-.-
!"#$%&'"()**$')+,$-(.(

/"0*$12"-+('$-3,4%&)+,$-#

>.0%2*)(50&+'--&0-(<(;2-'-
8,"+10&".?*%.&"(#&3*."-

© Texas Engineering Experiment Station 5FAA SW & AEH Conference | San Jose, CA

36Tuesday, October 25, 2011

Matlab

Simulink

Modelica

Models

...

Architecture

AADL

UML

SysML

...

Software

C/C++

Java

Fortran

...

FUTURE WORK

Architecture Level Software System Faults
& Their Root Causes

Violation of data stream assumptions

•Stream miss rates, Mismatched data representation, Latency jitter & age

Partitions as Isolation Regions

•Space, time, and bandwidth partitioning

•Isolation not guaranteed due to undocumented resource sharing

•fault containment, security levels, safety levels, distribution

Virtualization of time & resources

!"#$%&$'"#()*%'"+,(*"*),-.-
/&0%(+&""'+%.&"(+&"-.-%'"+,

/*0%.%.&"'#(*0+1.%'+%20'(3&#')-
4&#')(+&35).*"+'

•Logical vs. physical redundancy

•Time stamping of data & asynchronous systems

Inconsistent System States & Interactions

•Modal systems with modal components

•Concurrency & redundancy management

•Application level interaction protocols

Performance impedance mismatches

•Processor, memory & network resources

•Compositional & replacement performance mismatches

•Unmanaged computer system resources

6*2)%(50&5*7*%.&"(
8'+20.%,(*"*),-.-(

90+1.%'+%20*)(0'#2"#*"+,(
5*%%'0"-

:'-&20+'(;2#7'%(*"*),-.-(<(
%*-=(0&))$25(*"*),-.-
!"#$%&'"()**$')+,$-(.(

/"0*$12"-+('$-3,4%&)+,$-#

>.0%2*)(50&+'--&0-(<(;2-'-
8,"+10&".?*%.&"(#&3*."-

© Texas Engineering Experiment Station 5FAA SW & AEH Conference | San Jose, CA

Systems Architecture
Virtual Integration

36Tuesday, October 25, 2011

STATE MACHINE EXAMPLE

37Tuesday, October 25, 2011

STATE MACHINE EXAMPLE

IDLE
unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

doorClosed

lightOn drawerOpened

drawerOpened
lightOn

panelClosed

37Tuesday, October 25, 2011

DECOMPOSE INTO CONCEPTS

❶ State
State IDLE

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL

38Tuesday, October 25, 2011

❶ State

❷ Actions action

IDLE
unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

DECOMPOSE INTO CONCEPTS

39Tuesday, October 25, 2011

❶ State

❷ Actions

❸ Transitions event

IDLE
unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

doorClosed

lightOn drawerOpened

drawerOpened
lightOn

panelClosed

DECOMPOSE INTO CONCEPTS

40Tuesday, October 25, 2011

UNIFY CONCEPTS

41Tuesday, October 25, 2011

UNIFY CONCEPTS

IDLE
unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

doorClosed

lightOn drawerOpened

drawerOpened
lightOn

panelClosed

41Tuesday, October 25, 2011

UNIFY CONCEPTS

IDLE
unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

doorClosed

lightOn drawerOpened

drawerOpened
lightOn

panelClosed

41Tuesday, October 25, 2011

UNIFY CONCEPTS

IDLE
unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

doorClosed

lightOn drawerOpened

drawerOpened
lightOn

panelClosed

41Tuesday, October 25, 2011

UNIFY CONCEPTS

IDLE
unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

doorClosed

lightOn drawerOpened

drawerOpened
lightOn

panelClosed

41Tuesday, October 25, 2011

CONCLUSIONS

42Tuesday, October 25, 2011

CONCLUSIONS

• Language of Languages: An experimental language workbench
that unifies concepts expressed across different notations

42Tuesday, October 25, 2011

CONCLUSIONS

• Language of Languages: An experimental language workbench
that unifies concepts expressed across different notations

• Implemented using ideas of Language Elements, Concepts and
Language Definitions

42Tuesday, October 25, 2011

CONCLUSIONS

• Language of Languages: An experimental language workbench
that unifies concepts expressed across different notations

• Implemented using ideas of Language Elements, Concepts and
Language Definitions

• Available now from www.languageoflanguages.org

42Tuesday, October 25, 2011

http://www.languageoflanguages.org
http://www.languageoflanguages.org

CONCLUSIONS

• Language of Languages: An experimental language workbench
that unifies concepts expressed across different notations

• Implemented using ideas of Language Elements, Concepts and
Language Definitions

• Available now from www.languageoflanguages.org

• Contact Jamie Douglass (jamie.douglass@boeing.com) or
Nicholas Chen (nchen@illinois.edu)

42Tuesday, October 25, 2011

http://www.languageoflanguages.org
http://www.languageoflanguages.org
mailto:jamie.douglass@boeing.com
mailto:jamie.douglass@boeing.com
mailto:nchen@illinois.edu
mailto:nchen@illinois.edu

