
LANGUAGE OF LANGUAGES
www.languageoflanguages.org

1Tuesday, October 25, 2011

http://www.languageoflanguages.org
http://www.languageoflanguages.org


LANGUAGE OF LANGUAGES

Nicholas
Chen

www.languageoflanguages.org
1Tuesday, October 25, 2011

http://www.languageoflanguages.org
http://www.languageoflanguages.org


LANGUAGE OF LANGUAGES

Jamie
Douglass

Nicholas
Chen

www.languageoflanguages.org
1Tuesday, October 25, 2011

http://www.languageoflanguages.org
http://www.languageoflanguages.org


2Tuesday, October 25, 2011



Fortran

2Tuesday, October 25, 2011



Fortran

Lisp

2Tuesday, October 25, 2011



Cobol

Fortran

Lisp

2Tuesday, October 25, 2011



Cobol

Fortran

Lisp

3Tuesday, October 25, 2011



Cobol

Lua
PHP

FS
ha
rp

Haskell

Sc
al
a

G
ro
ov
yJ

av
a

Ja
va
sc
rip

t
Pr
ol
og

CS
ha
rp Octave
Perl

BashGo
Clojure

Python
Ruby
C++ Ob

je
ct
ive

-C
Scheme

Ocaml

JR
ub
y

Na
sm

JythonE
rla

ng

Fortran

Lisp

3Tuesday, October 25, 2011



Cobol

Lua
PHP

FS
ha
rp

Haskell

Sc
al
a

G
ro
ov
yJ

av
a

Ja
va
sc
rip

t
Pr
ol
og

CS
ha
rp Octave
Perl

BashGo
Clojure

Python
Ruby
C++ Ob

je
ct
ive

-C
Scheme

Ocaml

JR
ub
y

Na
sm

JythonE
rla

ng

Fortran

Lisp

UML

3Tuesday, October 25, 2011



Cobol

Lua
PHP

FS
ha
rp

Haskell

Sc
al
a

G
ro
ov
yJ

av
a

Ja
va
sc
rip

t
Pr
ol
og

CS
ha
rp Octave
Perl

BashGo
Clojure

Python
Ruby
C++ Ob

je
ct
ive

-C
Scheme

Ocaml

JR
ub
y

Na
sm

JythonE
rla

ng

Fortran

Lisp

CSS
UML

3Tuesday, October 25, 2011



Cobol

Lua
PHP

FS
ha
rp

Haskell

Sc
al
a

G
ro
ov
yJ

av
a

Ja
va
sc
rip

t
Pr
ol
og

CS
ha
rp Octave
Perl

BashGo
Clojure

Python
Ruby
C++ Ob

je
ct
ive

-C
Scheme

Ocaml

JR
ub
y

Na
sm

JythonE
rla

ng

Fortran

Lisp

CSS
LaTeXUML

3Tuesday, October 25, 2011



Cobol

Lua
PHP

FS
ha
rp

Haskell

Sc
al
a

G
ro
ov
yJ

av
a

Ja
va
sc
rip

t
Pr
ol
og

CS
ha
rp Octave
Perl

BashGo
Clojure

Python
Ruby
C++ Ob

je
ct
ive

-C
Scheme

Ocaml

JR
ub
y

Na
sm

JythonE
rla

ng

Fortran

Lisp

CSS
LaTeX

XML

UML

3Tuesday, October 25, 2011



Cobol

Lua
PHP

FS
ha
rp

Haskell

Sc
al
a

G
ro
ov
yJ

av
a

Ja
va
sc
rip

t
Pr
ol
og

CS
ha
rp Octave
Perl

BashGo
Clojure

Python
Ruby
C++ Ob

je
ct
ive

-C
Scheme

Ocaml

JR
ub
y

Na
sm

JythonE
rla

ng

Fortran

Lisp

CSS
LaTeX

XML
Regex

UML

3Tuesday, October 25, 2011



Cobol

Lua
PHP

FS
ha
rp

Haskell

Sc
al
a

G
ro
ov
yJ

av
a

Ja
va
sc
rip

t
Pr
ol
og

CS
ha
rp Octave
Perl

BashGo
Clojure

Python
Ruby
C++ Ob

je
ct
ive

-C
Scheme

Ocaml

JR
ub
y

Na
sm

JythonE
rla

ng

Fortran

Lisp

CSS
LaTeX

XML
Regex

GraphvizUML

3Tuesday, October 25, 2011



4Tuesday, October 25, 2011



LANGUAGES TYPICALLY USED

4Tuesday, October 25, 2011



LANGUAGES TYPICALLY USED

4Tuesday, October 25, 2011



LANGUAGES TYPICALLY USED

Matlab

Simulink

Modelica

Models

...

4Tuesday, October 25, 2011



LANGUAGES TYPICALLY USED

Matlab

Simulink

Modelica

Models

...

Architecture

AADL

UML

SysML

...

4Tuesday, October 25, 2011



LANGUAGES TYPICALLY USED

Matlab

Simulink

Modelica

Models

...

Architecture

AADL

UML

SysML

...

Software

C/C++

Java

Fortran

...

4Tuesday, October 25, 2011



LANGUAGES TYPICALLY USED

Matlab

Simulink

Modelica

Models

...

4Tuesday, October 25, 2011



SPECIALIZED DOMAINS

Matlab

Simulink

Modelica

Models

...

5Tuesday, October 25, 2011



SPECIALIZED DOMAINS

Matlab

Simulink

Modelica

Models

...

5Tuesday, October 25, 2011



SPECIALIZED DOMAINS

Electrical
Subsystem

Matlab

Simulink

Modelica

Models

...

5Tuesday, October 25, 2011



SPECIALIZED DOMAINS

Electrical
Subsystem

Flight
Controls

Matlab

Simulink

Modelica

Models

...

5Tuesday, October 25, 2011



SPECIALIZED DOMAINS

Electrical
Subsystem

Flight
Controls

Avionics

Matlab

Simulink

Modelica

Models

...

5Tuesday, October 25, 2011



SPECIALIZED DOMAINS

Electrical
Subsystem

Flight
Controls

Avionics
Mechanical/
Hydraulics

Matlab

Simulink

Modelica

Models

...

5Tuesday, October 25, 2011



EXAMPLE MODEL

6Tuesday, October 25, 2011



EXAMPLE MODEL
IDLE

unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

doorClosed

lightOn drawerOpened

drawerOpened
lightOn

panelClosed

6Tuesday, October 25, 2011



EXAMPLE MODEL
IDLE

unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

doorClosed

lightOn drawerOpened

drawerOpened
lightOn

panelClosed

6Tuesday, October 25, 2011



FOR THE PROGRAMMER
IDLE

unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

doorClosed

lightOn drawerOpened

drawerOpened
lightOn

panelClosed

7Tuesday, October 25, 2011



FOR THE PROGRAMMER
IDLE

unlockDoor
lockPanel

ACTIVE

WAITINGFOR
DRAWER

WAITINGFOR
LIGHT

UNLOCKEDPANEL
unlockDoor
lockPanel

doorClosed

lightOn drawerOpened

drawerOpened
lightOn

panelClosed

7Tuesday, October 25, 2011



FOR THE PROGRAMMER

State idle = 
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FOR THE ENGINEER

State idle = 
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State waitingForDrawerState = 
new State("waitingForDrawer");
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new State("unlockedPanel");
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FOR THE SYSTEMS ANALYST

State idle = 
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KEEP IN SYNC

State idle = 
new State("idle");

State activeState = 
new State("active");

State waitingForLightState = 
new State("waitingForLight");

State waitingForDrawerState = 
new State("waitingForDrawer");

State unlockedPanelState = 
new State("unlockedPanel");

active
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doorClosed

... ...

events 
! doorClosed
! drawerOpened
! ...
end

commands 
! unlockPanel
! lockPanel
! ... 
end

state idle 
! actions {unlockDoor lockPanel} 
! doorClosed => active
end
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•Meta-circularity: LoLs is implemented in LoLs 
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3 + 4
Parse!
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The team then identified the set of analyses for each of those tiers, propagating and validating 
requirements and constraints across model levels and across multiple operational quality dimen-
sions. In addition, the POC project was to demonstrate the feasibility of an architecture-centric 
model repository supporting the business process of airframer/supplier interaction. 

3.2 The Aircraft System Model 

  

Figure 6 shows the drawing of the aircraft system provided to the POC team. It shows major 
physical subsystems, some providing aircraft capability, such as navigation or landing gear, and 
others providing physical resources to the subsystems, such as the electrical power, hydraulics, 
and fuel. 

  

Figure 6: Aircraft System Drawing 

 

Figure 7: AADL Model of Aircraft System 
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Figure 7 shows a portion of the corresponding AADL model. In the model, we have represented 
the physical subsystems as AADL systems that can later be refined and the physical resources as 
AADL buses. Each aircraft subsystem is represented by a separate AADL system type whose spe-
cification includes properties about the physical characteristics (e.g., mass) of the subsystem. A 
separate bus type has been defined for each type of resource. Bus access connections represent the 
physical connection between subsystems and their resources. The bus types and access connec-
tions also have mass properties. In addition, each bus type has a resource capacity property, and 
the bus access features (connection points) have resource supply properties, such as the engine 
contributing electrical power to the electrical power resource, and resource budget properties, 
such as the cockpit drawing electrical power. 

We have elaborated the flight guidance system (FGS) of this Tier 1 model into a Tier 2 model 
representing the distributed computer platform (physical view) and the embedded application sub-
systems (logical view) of the IMA subsystem. This elaboration is not a separate model, but a re-
finement of the FGS system model using the AADL extends mechanism. Because of this refine-
ment, we can now specify a Tier 1 variant and a Tier 2 variant of the aircraft model and instantiate 
both for analysis from a single source. 

 

Figure 8: IMA Computer Platform 

Figure 8 shows a portion of the physical view that is, devices to represent sensors and actuators 
to the physical system, buses to represent networks such as ARINC429, and systems to represent 
processing units and communication units. The symmetry reflects the dual redundant nature of the 
IMA platform.  

The Tier 2 model also elaborates the electrical power distribution by a power subsystem that rece-
ives its supply from the main power system and provides it to the various computer hardware 
components, which is captured in a graphical view separate from the physical view in Figure 8. 
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& Their Root Causes

Violation of data stream assumptions

•Stream miss rates, Mismatched data representation, Latency jitter & age

Partitions as Isolation Regions

•Space, time, and bandwidth partitioning

•Isolation not guaranteed due to undocumented resource sharing

•fault containment, security levels, safety levels, distribution

Virtualization of time & resources
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